skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, George"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present Atacama Large Millimeter/submillimeter Array observations of the [CI] 492 and 806 GHz fine-structure lines in 25 dusty star-forming galaxies (DSFGs) atz= 4.3 in the core of the SPT2349–56 protocluster. The protocluster galaxies exhibit a median L [ C I ] ( 2 1 ) / L [ C I ] ( 1 0 ) ratio of 0.94, with an interquartile range of 0.81–1.24. These ratios are markedly different to those observed in DSFGs in the field (across a comparable redshift and 850μm flux density range), where the median is 0.55, with an interquartile range of 0.50–0.76, and we show that this difference is driven by an excess of [Ci](2–1) in the protocluster galaxies for a given 850μm flux density. Assuming local thermal equilibrium, we estimate gas excitation temperatures of T ex = 59 . 1 6.8 + 8.1 K for our protocluster sample and T ex = 33 . 9 2.2 + 2.4 K for the field sample. Our main interpretation of this result is that the protocluster galaxies have had their cold gas driven to their cores via close-by interactions within the dense environment, leading to an overall increase in the average gas density and excitation temperature, as well as an elevated [Ci](2–1) luminosity-to-far-infrared-luminosity ratio. 
    more » « less
    Free, publicly-accessible full text available April 4, 2026
  2. null (Ed.)
  3. Abstract We have observed thez= 4.3 protocluster SPT2349−56 with the Australia Telescope Compact Array (ATCA) with the aim of detecting radio-loud active galactic nuclei (AGNs) among the ∼30 submillimeter (submm) galaxies (SMGs) identified in the structure. We detect the central complex of submm sources at 2.2 GHz with a luminosity ofL2.2= (4.42 ± 0.56) × 1025W Hz−1. MeerKAT and the Australian Square Kilometre Array Pathfinder also detect the source at 816 MHz and 888 MHz, respectively, constraining the radio spectral index toα= −1.45 ± 0.16, implyingL1.4,rest= (2.2 ± 0.2) × 1026W Hz−1. The radio observations do not have sufficient spatial resolution to uniquely identify one of the three Atacama Large Millimeter/submillimeter Array (ALMA) galaxies as the AGN, however the ALMA source properties themselves suggest a likely host. This radio luminosity is ∼100× higher than expected from star formation, assuming the usual far-infrared–radio correlation, indicating an AGN driven by a forming brightest cluster galaxy. None of the SMGs in SPT2349−56 show signs of AGNs in any other diagnostics available to us, highlighting the radio continuum as a powerful probe of obscured AGNs. We compare these results to field samples of radio sources and SMGs, along with the 22 gravitationally lensed SPT-SMGs also observed in the ATCA program, as well as powerful radio galaxies at high redshifts. The (3.3 ± 0.7) × 1038W of power from the radio-loud AGN sustained over 100 Myr is comparable to the binding energy of the gas mass of the central halo, and similar to the instantaneous energy injection from supernova feedback from the SMGs in the core region. The SPT2349−56 radio-loud AGNs may be providing strong feedback on a nascent intracluster medium. 
    more » « less
  4. null (Ed.)
    Nonvolatile, molecular multiferroic devices have now been demonstrated, but it is worth giving some consideration to the issue of whether such devices could be a competitive alternative for solid-state nonvolatile memory. For the Fe (II) spin crossover complex [Fe{H2B(pz)2}2(bipy)], where pz = tris(pyrazol-1-yl)-borohydride and bipy = 2,2′-bipyridine, voltage-controlled isothermal changes in the electronic structure and spin state have been demonstrated and are accompanied by changes in conductance. Higher conductance is seen with [Fe{H2B(pz)2}2(bipy)] in the high spin state, while lower conductance occurs for the low spin state. Plausibly, there is the potential here for low-cost molecular solid-state memory because the essential molecular thin films are easily fabricated. However, successful device fabrication does not mean a device that has a practical value. Here, we discuss the progress and challenges yet facing the fabrication of molecular multiferroic devices, which could be considered competitive to silicon. 
    more » « less
  5. ABSTRACT We present APEX-LABOCA 870-μm observations of the fields surrounding the nine brightest high-redshift unlensed objects discovered in the South Pole Telescope’s (SPT) 2500 deg2 survey. Initially seen as point sources by SPT’s 1-arcmin beam, the 19-arcsec resolution of our new data enables us to deblend these objects and search for submillimetre (submm) sources in the surrounding fields. We find a total of 98 sources above a threshold of 3.7σ in the observed area of 1300 arcmin2, where the bright central cores resolve into multiple components. After applying a radial cut to our LABOCA sources to achieve uniform sensitivity and angular size across each of the nine fields, we compute the cumulative and differential number counts and compare them to estimates of the background, finding a significant overdensity of $$\delta \, {\approx }\,$$10 at $$S_{870}= 14$$ mJy. The large overdensities of bright submm sources surrounding these fields suggest that they could be candidate protoclusters undergoing massive star formation events. Photometric and spectroscopic redshifts of the unlensed central objects range from $z= $3 to 7, implying a volume density of star-forming protoclusters of approximately 0.1 Gpc−3. If the surrounding submm sources in these fields are at the same redshifts as the central objects, then the total star formation rates of these candidate protoclusters reach 10 000 M⊙ yr−1, making them much more active at these redshifts than seen so far in either simulations or observations. 
    more » « less
  6. ABSTRACT The protocluster SPT2349−56 at $z = 4.3$ contains one of the most actively star-forming cores known, yet constraints on the total stellar mass of this system are highly uncertain. We have therefore carried out deep optical and infrared observations of this system, probing rest-frame ultraviolet to infrared wavelengths. Using the positions of the spectroscopically confirmed protocluster members, we identify counterparts and perform detailed source deblending, allowing us to fit spectral energy distributions in order to estimate stellar masses. We show that the galaxies in SPT2349−56 have stellar masses proportional to their high star formation rates, consistent with other protocluster galaxies and field submillimetre galaxies (SMGs) around redshift 4. The galaxies in SPT2349−56 have on average lower molecular gas-to-stellar mass fractions and depletion time-scales than field SMGs, although with considerable scatter. We construct the stellar-mass function for SPT2349−56 and compare it to the stellar-mass function of $z = 1$ galaxy clusters, finding consistent shapes between the two. We measure rest-frame galaxy ultraviolet half-light radii from our HST-F160W imaging, finding that on average the galaxies in our sample are similar in size to typical star-forming galaxies at these redshifts. However, the brightest HST-detected galaxy in our sample, found near the luminosity-weighted centre of the protocluster core, remains unresolved at this wavelength. Hydrodynamical simulations predict that the core galaxies will quickly merge into a brightest cluster galaxy, thus our observations provide a direct view of the early formation mechanisms of this class of object. 
    more » « less